Analytical Description of SMA Actuator Dynamics based on Fermi-Dirac Function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pole-Based Approximation of the Fermi-Dirac Function∗∗∗∗

Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal mapping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic...

متن کامل

Fermi-Dirac Statistics

Fermi-Dirac statistics are one of two kinds of statistics exhibited by!identical quantum particles, the other being !Bose-Einstein statistics. Such particles are called fermions and bosons respectively (the terminology is due to Dirac [1902-1984] [1]). In the light of the !spin-statistics theorem, and consistent with observation, fermions are invariably spinors (of half-integral spin), whilst b...

متن کامل

Motion Analysis of In-pipe Robot Based on SMA Spring Actuator

The in-pipe robots play significant role for applications like inspection of pipes or wearing of cables and materials, etc. The paper deals with motion analysis of in-pipe robot, whose actuator is based on shape memory effect. At first, the principle of motion and design solution of experimental in-pipe robot is introduced. Then the mathematical model is establish by means of Newton ́s mechanics...

متن کامل

Improved analytical representation of combinations of Fermi-Dirac integrals for finite-temperature density functional calculations

Smooth, highly accurate analytical representations of Fermi–Dirac (FD) integral combinations important in free-energy density functional calculations are presented. Specific forms include those that occur in the local density approximation (LDA), generalized gradient approximation (GGA), and fourth-order gradient expansion of the non-interacting free energy as well as in the LDA and second-orde...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Physica Polonica A

سال: 2017

ISSN: 0587-4246,1898-794X

DOI: 10.12693/aphyspola.131.1274